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This paper presents a simple theory for evaluating the several measures used to 
characterize the intermittency of he-scale turbulence, and corroborates the theor- 
etical results from comparison with experimental data, some of which are new. The 
basic analytical tool is the envelope of the narrow-bandpass-filtered turbulent signal, 
d e h e d  via its Hilbert transform and the analytic signal. The contribution of this 
paper is twofold. First, it  correctly identifies the roles played by the filter charac- 
teristics (such as the bandwidth) in determining the intermittency factor, the width 
of the active regions (pulses) in narrow-bandpass-filtered turbulent signals, and the 
pulse frequency; it also reveals that all dynamical characteristics of the signal enter 
indirectly through the peak pulse frequency and the threshold setting. Secondly, the 
theory suggests that, in the far-dissipation range, the most important feature of 
signals exhibiting internal intermittency is the stronger-than-algebraic roll-off of the 
spectral density in that region; it is argued that this feature of turbulence essentially 
determines the peak pulse frequency in that region. The theory is incomplete in that 
it does not show how the threshold setting depends on the signal dynamics, but here 
the discussion is supplemented by experimental data. 

1. Introduction 
In a seminal paper, Batchelor & Townsend (1949) made the discovery that the h e  

structure of turbulence in high-Reynolds-number flows is both spatially and 
temporally intermittent. The experimental evidence at the time consisted of succes- 
sively differentiated velocity signals which showed an increasingly ‘ binary ’ character 
with narrow regions of high activity separated by those of relative quiescence. 
Batchelor & Townsend’s measurements were confined to grid turbulence and wakes, 
but the subsequent experimental work - to name just a few - of Sandborn (1959) in 
turbulent boundary layers, of Kennedy & Corrsin (1961) in the free shear layer at  
the exit of a square duct, of Grant, Stewart & Moilliet (1962) in a tidal channel, of 
Badri Narayanan, Narasimha & Rao (1971) in a fully developed duct flow, Kuo & 
Corrsin (1971) in far-field jets, etc., has established that the fine-scale intermittency, 
or ‘spottiness’, is a common occurrence in turbulence, and one of its important 
attributes. 

The recognition of the basic nature of fine-scale (or ‘internal’) intermittency has 
led to a profound change in our understanding of small-scale turbulence. It has led 
to a modification in a very vital way of the ‘universal similarity hypothesis’ of 
Kolmogorov (1941) according to which energy cascade down the wavenumber 
spectrum occurs at  high Reynolds numbers in such a way that all statistical 
information, except for the mean energy-dissipation rate itself, is lost on the 
‘ universal, isotropic and homogeneously distributed ’ small scales of motion. 

A lot of work on fine-scale intermittency has occurred, principally in three 
different, albeit interacting, directions. The first of them is a group of arguments that 
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can be designated collectively as the scale-similarity arguments. The second variety, 
which does not recognize the energy cascade explicitly, leads to ‘mechanistic’ models 
of fine structure. The third, of course, is the experimental work in turbulent flows. 
Each of these groups deserves to be commented on briefly. 

The scale-similarity arguments go essentially thus. Within a given field of 
turbulence, consider a cube with sides of length Lo, where Lo is an integral scale of 
turbulence. If we divide this cube into an arbitrarily large number n( % 1) of smaller 
cubes of length L, = Lo nf ,  the simplest picture of internal intermittency implies that 
the fine-scale turbulence is not uniformly distributed over all the cubes of linear 
dimension L, but only over some of them. Novikov & Stewart (1964) proposed a rather 
specific model which envisaged that practically all the dissipative fine structure exists 
in only a few of these first-order cubes (say m of them, m 4 n) distributed in a random 
fashion. Further subdivision of these cubes into second-order ones of length 
L, = L, n f ,  it is hypothesized, would show that the dissipation is contained only in 
some small number of these second-order cubes, and so on. This is also the so-called 
absolute curdling of Mandelbrot (1976). Instead of assuming that some subcubes 
contain all the dissipation and some nothing, if one assumes, for a fixed dissipation 
rate in a cube of order j, that the density of dissipation rate in each subcube of order 
j + 1 is multiplied by a random variable g, with ( 9 )  = 1, then the so-called ‘weighted 
curdling’ of Mandelbrot, or the ‘cascade process of eddy breakdown’ of Yaglom 
(1966) results. The essence of the argument here is that the probability density 
function g is assumed to be independent of j until one reaches sizes where viscous 
effect becomes directly important. If logg is assumed to be normally distributed, one 
obtains the famous lognormal distribution proposed by Kolmogorov (1962). It should 
be emphasized - as has been done on several occasions, for example, by Kraichnan 
(1974), Mandelbrot (1976), Frisch, Sulem & Nelkin (1978) - that the lognormal model 
is only one of several possibilities with no special merit to it, and that the large 
measure of past preoccupation with it is probably unwarranted. It is to be noted that 
none of the models discussed in this paragraph makes a direct appeal to the 
Navier-Stokes equations. 

The motivating factor for the second group of models appears to be the vortex- 
stretching phenomenon; there is thus an implied connection here with the Naviep 
Stokes equations. The earliest model is perhaps due to Townsend (1961), who, 
however, did not incorporate spottiness explicitly. Several years later, Comin (1962) 
visualized a model in which the fine structure was made up of vortex sheets of 
thickness of the order of Kolmogorov’s microscale 7, with a mean separation distance 
of the order of an integral scale of turbulence. Tennekes (1968) pointed out that the 
model is inconsistent because it predicts an incorrect order of magnitude for the 
energy-dissipation rate, and proposed an alternative model in which the vortex 
concentration occurs in the form of tubes (rather than sheets) with diameters of the 
order of 7 and spacing of the order of the Taylor microscale A. Neither of these models 
predicts the correct dependence of skewness and flatness factors on the Reynolds 
number (e.g. Van Atta t Antonia 1980), and so must be considered incomplete if 
not incorrect. (We may also note that Mandelbrot (1976) dismisses these models as 
incorect; his reasoning is related to  fractal dimensions and will not be repeated here.) 
Saffman (1968) assumed that vorticity is concentrated in the form of tubes and sheets 
with the characteristic dimension of the order of @/a)!, where a is the local 
straining rate. If the concentration of vorticity is assumed to occur by the straining 
due to large eddies, it  follows that a = 4/Lo, where Q is a characteristic velocity of 
the large eddies. However, in contrast with experimental findings (see e.g. Sreenivasan 
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1984), the model predicts a dissipation rate that is strongly Reynolds-number 
dependent. To avoid this inconsistency, Saffman further hypothesized that the vortex 
sheets and tubes undergo a secondary instability of the Taylol-Gortler type; this 
results in the concentration of vorticity effectively into thin sheets of thickness of 
the order of 7, and spacing of the order of 6. (At this point, it is worth pointing out 
that the fine structure is as often identified with vorticity as with dissipative eddies. 
However, regions of strong dissipation do not always coincide with regions of strong 
vorticity (see, for example, the direct numerical solution of the Navier-Stokes 
equations for the Taylol-Green flow by Brachet et al. 1983). Consequently, it is 
possible that slightly different conclusions may arise depending on whether one means 
by fine structure dissipative eddies or vorticity-bearing ones. This is not the only 
source of ambiguity in the literature on fine-scale turbulence. Experimentally, one 
measures most often the characteristics of the rate of strain au/ax  - again, regions 
of strong au/ax  do not coincide with regions of strong vorticity (see Siggia 
1981) - which itself is obtained by invoking Taylor’s frozen-field approximation ; 
here u is the velocity fluctuation in the longitudinal (or mainstream) direction x .  
Alternatively, one also examines the output of narrow-bandpass filters or high-pass 
filters set appropriately high. In  spite of these ambiguities, one hopes that the main 
attributes of internal intermittency somehow come through.) 

The earliest experimental studies are due to Batchelor & Townsend (1949) who 
estimated the internal intermittency factor from measurements of the flatness factors 
of differentiated or bandpass-filtered velocity signals. The justification for this 
procedure was simply that for an ideally intermittent on-off signal which has a 
flatness factor Fa for its ‘on part ’, the intermittency factor y is related to the overall 
flatness factor F by the relation 

F = FJy. (1.1) 

If the ‘on part’ is Gaussian, Fa = 3. In practice, the ‘off part’ is not completely 
quiescent, nor is the ‘on part’ Gaussian, and so the intermittency factor can be 
inferred from flatness-factor measurements only if the probability distributions of 
both states are known. Kennedy & Corrsin (1961) emphasized this, and also showed 
that larger derivative flatness does not necessarily imply larger intermittency . 
Following this rationale, direct measurements of the intermittency factor have later 
been made by Kuo & Corrsin (1971), who also obtained information about the linear 
dimension, or ‘width’, of these fine-scale regions. Further information about the 
fine structure was obtained by Kuo & Corrsin (1972), who attempted to determine 
the geometry of the fine-scale regions by measuring the dependence of the two-probe 
intermittency on the spatial separation of the probes. Briefly, their conclusions appear 
to suggest a greater tendency of the fine structure to be filament-like in its geometry 
rather than blob-like or sheet-like. 

The work of Rao, Narasimha & Badri Narayanan (1971) is also of interest here. 
Rao et al. systematically examined turbulent velocity signals by bandpass filtering 
them at various mid-band frequencies. Their contribution was in devising a method 
for counting at high Reynolds numbers (where visual counting becomes very difficult) 
the frequency of active regions in narrow-bandpassed signals - the so-called pulses 
in the terminology of Badri Narayanan, Rajagopalan & Narasimha (1977) - and in 
concluding that the mean spatial separation distance between the pulses is of the order 
of the integral scale of turbulence - a result which was qualitatively anticipated by 
Batchelor & Townsend (1949). Badri Narayanan et al. (1971) extended these 
measurements to other shear flows and arrived a t  similar conclusions, although their 
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measurements in grid turbulence were inconclusive. More detailed measurements of 
similar type have also been made by Badri Narayanan, Rajagopalan & Narasimha 
(1974, 1977) and Antonia, Danh & Prabhu (1976). These authors also obtained 
information on the width of the pulses. 

Unfortunately, an examination of these various recent data shows large differences - 
real or apparent, qualitative and quantitative - among them. For instance, in the 
measurements of Rao et al. and Badri Narayanan et al. the mean frequency of the 
occurrence of active regions has tended to be independent of the mid-frequency 
setting of the bandpass filter beyond a certain setting; on the other hand, Antonia 
et al. did not find a conclusive asymptote, but only a break point above which the 
rate of increase of frequency became smaller. Kuo & Corrsin’s measurements, 
however, showed that the pulse frequency initially increased as the filter setting was 
increased and then decreased. The normalized estimates of the mean spacing between 
the pulses determined by the various authors differ among themselves by a factor 
of about 10. Further, the fine-scale intermittency factor y as well as the (normalized) 
pulse width were found to be independent of Reynolds number by Antonia et al., 
whereas Kuo & Corrsin’s measurements showed a decrease a t  low Reynolds numbers 
before settling down to a constant beyond a microscale Reynolds number of 350; this 
constant, however, was numerically different from the value found by Antonia et al. 
Badri Narayanan et al. found both y and the pulse width to increase monotonically 
with Reynolds number. 

Evidently either these different authors were measuring different parameters 
without explicitly recognizing it to be so, or that extraneous effects distorted the 
results in one or the other (or all) of them. An assessment of the various experimental 
techniques used in these recent experiments, with a view to consolidating the genuine 
common ground as well as isolating points of departure among them, is a major 
motivation for this paper. In the course of the work that followed, it became clear 
that some of the properties attributed to fine-scale turbulence are also shared by other 
bandpass-filtered random processes; at any rate, it did not seem necessary to invoke 
explicitly any special dynamical features for explaining some of those observations. 
Filter characteristics were also determined to be extremely important. To put these 
preliminary conclusions on firmer ground, we undertook to examine a simple 
analytical tool with a fairly wide applicability in the study of random signals passed 
through narrow-band filters. Corroborating measurements were also made. The net 
picture that emerges is fairly simple, and seems to explain rather well most 
observations and remove nearly all the discrepancies which seemed to prevail at a 
first look. 

In  $82 and 3 a description of the analytical method is given, and its performance 
is assessed for comparison with the new test-case experiments with an essentially 
Gaussian process. In $ 4  measurements (some of which are new) relating to turbulent 
signals in boundary layers and flow behind grids are examined in the light of the 
results derived in $52 and 3. Section 5 contains a summary of conclusions which also 
assesses the significance of this work. 

2. Analytical preliminaries 
2.1. Motivation 

For identifying the high-frequency pulses and determining their statistical properties, 
Badri Narayanan et al. (1977) described and used a signal-processing technique. This 
technique, also used by Antonia et al. (1976), differs from that of Rao et al. (1971) 
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FIQURE 1. A schematic of a turbulent signal bandpaas-filtered at some midband frequency f,. The 
crossing frequency a as a function of the level t (that is, the distance from the zero of the filtered 
signal normalized by its own root-mean-square value) is indicated on the left. a,, is the maximum 
of a(2). 

only in some detail, and bears a close relation to that used by Kuo t Corrsin (1971). 
A brief description of this technique will therefore serve as a useful and necessary 
starting point. 

In this technique, a given turbulent signal is filtered through a bandpass filter at 
a mid-frequency f,. This results in an amplitude-modulated signal of frequency f, 
with the period of modulation corresponding to the inverse of the filter bandwidth 
(see figure 1). Regions of activity in this bandpass-filtered signal are designated here 
(following Badri Narayanan et al. 1977) as pulses. An envelope is then drawn over 
the bandpassed signal and the positive crossing frequency ri of the envelope is 
determined as a function of the threshold t, say. Clearly, this frequency will have a 
peak for some t ;  we denote the peak frequency in the ri versus t curve by rip (see 
figure 1). In  general, rip is a function of the selected midband frequency f,. This 
exercise is therefore repeated for several values off,, and the variation of rip with 
f, is determined. For turbulent signals, the measurements of Rao et al. have shown 
that rip increases with f, when f, is low (typically in the energy-containing 
frequency range), but asymptotically becomes independent off, when f, is high 
(typically in the dissipation range) - a result that those authors attributed to fine- 
scale intermittency. In  their further work, the asymptotic value of rip, say flp, 
corresponding to the essentially flat region of the rip versus f, curve, played an 
important role as the characteristic pulse frequency of the turbulent signal. Because 
the mechanics of this signal processing are fairly complicated, it seems appropriate to 
understand its details before attempting to interpret the results; this is essentially 
the motivation for the discussion in this and the next sections. Neither Rao et al. 
nor Badri Narayanan et al. offered any explanation for the behaviour of ri versus 2 
or rip versus f, curves. 

2.2. Theoretical background 
Let z(t) be a stationary stochastic process with zero mean, continuous in the quadratic 
mean, defined as 

OD 

z(t) = 5 eiutdC(w). (2.1) 
-OD 

Define the Hilbert transform y( t )  of z(t) by 
OD 

y( t )  = - i sgn w eiWt d<(o), 
-OD 
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where sgnw = & 1 when w >< 0. It is seen that taking Hilbert transform is equivalent 
to a curious kind of linear transformation in which the amplitude remains unchanged, 
but the phase gets shifted by depending on the sign of w .  By convolution 
theorem, i t  follows that 

1 
7Ct 

y ( t )  = -- *z ( t ) .  

Form the complex function 
z ( t )  = z(t)  + i y ( t ) .  

Now, z ( t )  is called the analytic signal of z(t).  The significance of the analytic signal 
is known from communication theory; briefly, it bears the same relation to z(t) 
as exp (it) does to cost. The original signal z(t) can be recovered from the analytic 
signal z ( t )  by projection on the real axis. For a somewhat elaborate discussion, see 
e.g. Bracewell (1965). The envelope E(t )  of z(t )  is then simply defined as the modulus 
of the analytic signal z ( t ) .  That is, 

E(t )  = I z ( t ) (  = [z"(t)+y2(t)]:. (2.3) 

To see that this definition is meaningful, consider first some simple cases. 
(i) Let z(t) = A cos (wl t +  el), w1 > 0, and form the complex function 

z ( t )  = A ei(wit+oi) 

with its real part equal to ~ ( t ) .  Clearly 

Iz(t)l = A 

is the envelope E(t )  of z(t ) .  For the function B sin (w2t+8 , )  it  is easily shown that 
the corresponding analytic signal is - iB e-i(Wpt+e2), and the same interpretation of the 
envelope holds. 

(ii) Consider z(t) = A cos (w, t +  8,) + B sin (w,t+ 02). The analytic signal is given as 

z( t )  = A t+e,) - iB ei(% t+@d 

whose absolute value defines the envelope of z ( t ) .  

a meaningful definition of the envelope when, say, wl+w2 % w1-02. 
It is not hard to visualize (by actually working out the details) that this is indeed 

(iii) Consider a more complicated function 
a0 00 

z(t)  = X A, coswflt+ X B, sinwflt. 
fl-0 fl-0 

By analogy with (ii) above, 
a, 00 

z ( t )  = Afleiwnt-i Bfle-iwnt. 

Again, the envelope is defined as I z I. While this is not easy to visualize physically, 
1 z I clearly satisfies the mathematical requirements of an envelope. 

(iv) Finally, consider a real continuous stochastic process defined by (2.1), which 
can alternatively be written as 

12-0 12-0 

z(t) = (dh coswt+dq sinwt), E 
where = m J ) - C ( - 4 9  q(w) = i(C(w)+C(-w>). 

By analogy with (iii), we have 
z ( t )  = x(t)+iy(t), 
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where y is defined by (2.2). Again, Iz(t)l is defined as the envelope of z(t). For a 
physically meaningful picture, it is necessary to restrict s(t )  to narrow-band signals, 
and, as we shall discuss more fully in $2.3, this is done here. 

In particular, let z(t) be a Gaussian process possessing finite first and second 
spectral moments m, and m2 defined by 

m, = Jr or$(@) do, r = 1,2.  

Here, w = 27cf is the angular frequency and #(o) is the power-spectral density of z(t) 
defined such that 

d(w)  dw = 7% (2.5) 

where mo is the mean-square value of z(t). For these conditions, it has been shown 
(e.g. Cramer & Leadbethr 1967) that the expected number of positive crossings n 
of a level 1 (normalized by the root-meen-square value of z(t))  of E(t) is given by the 
Rayleigh distribution 

n(Z) = (t/27t)4 I e-ize, (2.6) 

wheret 

The peak value of this distribution 

np = maxn(Z) = n(1) 
1 

is given by np = (5/27re)i. (2.8) 

Thus, all one needs to know to determine np for a given Gaussian process z(t) are the 
first three moments m,, m, and m2 of its real spectral density $(o). The crossing 
frequency at any level 1 follows from (2.6) and (2.8) to be 

(2.9) n(l)/n, = ei I e+. 

A t  any given threshold level I ,  we can define the width of the active region as the 
interval between an upcrossing and a subsequent downcrossing of 1 by the envelope 
E(t) (see figure 1). Then it can be shown (e.g. Cramer & Leadbetter 1967) that the 
mean width W, of the active region (that is, the region above the threshold level) is 
given by 

Define now the fraction of the total time the signal is active (i.e. enclosed within the 
envelope) as the intermittency factor y associated with the signal. Then it follows 
from (2.6) and (2.10) that 

Note that the intermittency factory is independent of the form of the spectral density 
$(w). Another convenient relation is 

W n 1 = ef x 0.607. a p  

(2.10) W,(Z) = (27c/[Z2)4. 

y W, n = e-9'. (2.11) 

(2.12) 

2.3. Bandpass-filtered signals 

Although the envelope defined in $2.1 is of general mathematical validity, it is not 
necessarily always a well-defined physical entity for wide-band stochastic processes. 

t Noting that # ( w )  2 0 for all w ,  straightforward application of Schwarz's inequality shows that 
6 2 0 always. 
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On the other hand, for narrow-bandpass-filtered random signals, it  is a perfectly 
realizable entity (see figure 1); this is precisely why the envelope defined through the 
analytic signal becomes a useful tool in internal intermittency studies. Our concern 
is essentially with the narrow-bandpass-filtered signals, say 2(t; A;fm), obtained by 
passing the signal x ( t )  through a bandpass filter of constant fractional bandwidth A 
set to a midband frequency f,. We can now treat the bandpass-filtered signal 2 as 
a new stochastic process, whose spectral density is the same (except for the scaling 
factor) as that of the original unfiltered signal x ( t )  in the narrow bandwidth chosen, 
and zero everywhere else. It follows that the quantities corresponding to (2.3), (2.4), 
(2.7)-(2.9), (2.11) and (2.12) are 

(2.13) 

(2.14) 

B(t) = I%(t)l = [22(t)+p(t)]:, 

Gr = c::::o"$(o)do, r = 0 ,1 ,2 ,  

2 l=k)-R) 9 (2.15) 

Wa fip t = e-t. (2.19) 

Here #(o) is the spectral density of the unfiltered signal x ( t )  from which 2(t) is derived 
from bandpass-filtering around the midband frequency fm = om/2n; and t is the 
crossing level normalized by the root-mean-square of the bandpass-filtered signal 
2(t;  A;fm). All the variables defined in (2.13)-(2.16) depend in general on both A and 
f,, but this dependence will not always be explicitly mentioned. The symbol A will, 
however, be used consistently to denote quantities associated with bandpass-filtered 
signals. 

3. Results for bandpass-filtered random Gaussian processes 
3.1. White noise 

White noise, for which # ( w )  = constant, is quite often adequately described by a 
Gaussian probability density function. When bandpass-filtered, the spectral density 
is ideally a constant within the bandwidth and zero everywhere else.? It follows from 
(2.14), (2.15) and (2.16) that 

From (2.19) and (3.1) we have 

ra fm A t  = (6/lt)t x 1.38. (3.2) 

Finally y = e-V2. (3.3) 

Equation (3.1) shows that, for a given bandwidth, the peak pulse frequency 6, 
increases linearly with the midband frequency and, for a given midband frequency, 

t Since the filtering operation is linear, the probability density of the filtered signal is also 
Gaussian. 
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FIQURE 2. The pulse frequency A in filtered white-noise signals as a function of the level of 
crossing t ;  the bandwidth A = 0.52; + ,fm = 500 Hz, measured AP = 110 Hz; 0, @,f, = lo00 Hz, 
AP = 208 Hz (filled and unfilled circles correspond to either side of zero of the filtered signal); 
A, f, = 2500 Hz, fip = 585 Hz; -, equation (2.17). 

increases linearly with the fractional bandwidth. It follows from (3.2) that, for 
fixed fractional bandwidth A and level 1, the width va of the active regions in the 
bandpassed signal is inversely proportional to the midband frequency. Interestingly, 
it is seen from (3.3) that y is independent off, and the bandwidth A. 

Before we attempt to confirm these results by experiment, it is necessary to 
establish the meaning of the parameter A used in (3.1) and (3.2). In  this theory, A 
is the width of an ideal narrow-bandpass filter, which is assumed to have a perfectly 
sharp cut-off characteristic. In  practice, however, no bandpass filter has this perfect 
cut-off. Several equivalent ideal bandwidths can be defined for such filters (see e.g. 
Bendat & Piersol 1971, p. 277) if the transfer function H ( f )  is known. Here we shall 
assume that A corresponds to the so-called half-power bandwidth. That is, 

A = (f2-f1)/fm3 

where fi and fi are defined by the equations 

I H(f1) l2 = I H(f2) l2 = i I H(fm) 1 2 *  
We shall now adopt this definition and show that it is adequate for our purposes here. 
Other definitions of A make no essential difference. 

Figure 2 shows a plot of f i / f i p  versus t for white noise from a commercial random- 
noise generator (VEB Schwingungstechnik Akustik, type NRG 201) filtered by a 
Krohnhite filter (model 3202) a t  three midband frequencies of 500,1000 and 2500 Hz. 
The curve is symmetrical with respect to t = 0 as the data for f, = 1000 Hz explicitly 
show. The Rayleigh distribution (2.17) is found to be in excellent agreement with 
measurements. In  figure 3 measured values of AP/jm A are plotted for several values 
off, and two values of A. For the present experiments, A was determined by 
measuring the response of the filter; for the data of Rao et al., although the authors 
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FIQURE 3. The peak pulse frequency in filtered white-noise signals as a function of midband 
frequencyf, and bandwidth A :  0 ,  present data, A = 0.52; +, Rao et al. (1971), A = 0.17; -, 
equation (3.1). 

did not explicitly mention the bandwidth of the filter they used, we have used a 
A = 0.17 appropriate to their filter. It is seen that the ratio is a constant very close 
to the theoretical value given by (3.1). Figure 4 shows a plot of @a fm A t  for several 
bandpass-filtered Gaussian signals ; although the uncertainty in measuring @a for 
large t results in considerable scatter, i t  is clear that  the trend is correctly predicted 
by the theory. Finally, figure 5 bears out (3.3) rather well. 

I n  conclusion, we have demonstrated that the theoretical approach does indeed 
work in the expected manner. 

3.2. Non-white signals 

For later discussion, we consider here other Gaussian random processes whose 
spectral densities are not flat. Our concern will be the peak frequency &,,, especially 
its asymptotic value fl,, as f m + c c  (see $1). Other parameters are given by 
(2.17)-(2.19). 

FIGURE 4. The mean pulse width in filtered white-noise signals as a function 
off,,,, A and 1: symbols as in figure 2 ;  -, equation (3.2). 
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1 
FIQURE 5. The (internal) intermittency factor y as a function of the crossing level t for filtered 
white-noise signal: +,f, = 500 Hz; 0,  1 kHz; A, 2.5 kHz; A = 0.52 in all cases; -, equation 
(2.18). 

(i) $(f) = c f n ,  n > 0, and c independent off. For this algebraic cut-off, it follows 
from (2.15) that 

P-Pm, (3.4) 

so that, from (2.16), fip - f m .  (3.5) 

I?, is thus undefined. 

(spelled out in more detail here for future use) are 
(ii) $(f) = ce-d, a > 0. For this exponential roll-off, the corresponding results 

72, = - 
a 

2R 

where [ = atm A .  As f, + a0 , 6 and A, tend to finite limits. It follows that 

f lp=T. 1.52 

(iii) As simple generalization of (ii) consider 

(3.7) 

$ - f* e+f. 

The detailed expressions for and fi, are complicated, but it not hard to  show that 

I?p = 1.52(2r+ l)i//3. (3.8) 

(iv) As another generalization of (ii) consider 
m 

$ = Z are-prf, Br > Pr-1; 
n-1 

it is easy to show that Np = 1.52/pl6,. 

This follows from (ii) because, for largerf, other terms involving /3, (n > 1) becomes 
unimportant faster than the first term a, e-plf. 

4 PLY 151 
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(v) Consider 
(3.9) 

In  this case, we have, for large f,, 

(+I  for allr, 

so that flp = 1.52/p. 

4. Bandpass-filtered turbulent signals 

turbulent shear flows separately from those in grid-generated turbulence. 
For reasons that will become clear in $4.2, it is useful to consider the data in 

4.1. Turbulent shear flows 

Figure 6 shows the variation of A/Ap as a function of the level t normalized by the 
root-mean-square of the bandpass-filtered signal. A variety of signals at different 
Reynolds numbers has been included here: those of Rao et al. were obtained by 
filtering at different midband frequencies the streamwise velocity fluctuation u in the 
inner layer; the present results are for u at y/6 = 0.3 (at one midband frequency) 
and y+ % 5 at several midband frequencies. In the present experiments, the velocity 
fluctuation u was obtained with a 5 pm diameter DISA hot wire operated on a DISA 
55M01 constant-temperature anemometer. (Note : As no information is available on 
the root-mean-square value of the bandpass signals in the data of Rao et al., the plots 
are adjusted such that f i / A P  = 1 when t = 1. For the present results, however, .! was 
obtained from direct measurement.) Interestingly, these data have essentially the 
same behaviour as suggested by (2.17); further, this behaviour is common with 
turbulent signals in other shear flows (e.g. turbulent jets). 

The mean width wa of the pulses has also been measured in several flows. Figure 7 
is a plot of waApt as a function of the Reynolds number R, in these flows. 
(R, = u‘A/v, where u‘ is the root-mean-square streamwise velocity, A is the Taylor 
microscale and v is the kinematic viscosity.) The relatively large scatter is not 
surprising considering the nature of these measurements, but it is clear that no 
apparent trend exists with R,, or with respect to the nature of the shear flow. In  fact, 
the mean value of pa A, t data (0.55 f0.09) is within 10 % of the value of about 0.607 
given by equation (2.19). Figure 8 shows that the y versus t relation is described by 
(2.18) reasonably well. 

What we have shown so far in this section is that the behaviours of the parameters 
A/Ap, ma rip t and y can be explained quite well by our analytical procedure, which 
does not at all invoke the dynamics of turbulence. It is thus clear that if these 
quantities, normalized in the above manner, are to be indicators of internal 
intermittency at all, that property must come entirely through t, the level of crossing 
(or, the threshold setting), the only one parameter on which depend the three 
quantities mentioned earlier. The picture is not complete, of course, until we can 
determine the precise way in which the peak pulse frequency fip, which we have used 
for normalization above, depends on the dynamics of the signal. Two crucial questions 
then are as follows. (a) What is the relation between the signal dynamics and the 
‘correct ’ threshold setting in internal intermittency measurements ? (b) What aspects 
of signal dynamics are relevant to the determination of the scaling parameter fip ? 
We shall relegate the discussion of (a) to $5, and consider (b) below. 

For a Gaussian process, the factors influencing Ap are (see (2.14)-(2.16)) the filter 
bandwidth A ,  the midband frequency f, and the spectral density #(w).  It may be 
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FIQURE 6. The pulse frequency a in filtered streamwise velocity fluctuations in turbulent boundary 
layers, as a function of the level of crossing 2. Present data: V, y/8 = 0.3, Re = 7260, f, = 5 kHz; 
*, f, = 1.28 kHz; A, 1.6 kHz; + , 2 kHz; (>, 3.2 kHz. For the last four sets, y+ x 5, Re = 1580. 
Data of Rao et al. obtained in the inner layer, Re = 9450: A, f, = 2 kHz; A, 4 kHz; 0,  6 kHz; 
x ,  8 kHz; 0, 10 kHz. -, equation (2.17). 
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RQURE 7. The mean pulse width in filtered turbulent signals on various shear flows, plotted aa a 
function of the microscale Reynolds number. Present data for filtered u in turbulent boundary 
I a y e r s : ~ , ~ = 0 . 4 ; ~ , ~ =  l.6,bothforfm= 1.28kHz,y+=5tmdRe= 1580;O,t= l , f m = 5 k H z ,  
y/S = 0.3, Re = 7260. Data of Badri Namyanan et d. for u in turbulent boundary layers: x , 
y/S x 0.4, Re = 190Ck5500. Data of Antonia et al.: 0,  u; A, temperature fluctuation, both in the 
atmospheric surface layer; 0, u, y/8 = 0.12, Re = 5860. Where unspecified, f, is not accurately 
known. -, equation (2.19). 

4-2 
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FIQURE 8. The (internal) intermittency factor y asa function of the crossing level tfor filtered u-signals 
in turbulent boundary layers: 0,  R, = 1580, y+ % 5, f, = 1.28 kHz; 0, Re = 7260, y/8 = 0.3, 
f, = 5 kHz; -, equation (2.18). 

thought a priori that certain other factors (such as non-Gaussianity) would have to 
be included when dealing with turbulent signals. However, the success we have so 
far had with the theory suggests that it is worth evaluating A, without considering 
these extra ‘complications’, and so we pragmatically take from measurements the 
spectral density # ( w )  of the particular signal under question, and evaluate A,. If the 
A, so evaluated (for given f, and A )  differs substantially from measurement, some 
of the features excluded at  this stage from the theory may be inferred to be important. 
In the absence of any substantial disagreement, we should conclude that the 
important aspects of turbulence dynamics (only in so far it relates to A,!) somehow 
enter essentially through the spectral density, and that the other features like 
non-Gaussianity are not in themselves critical. (We should like to add, even if 
somewhat unnecessarily, that non-Gaussianity is of undoubted importance in many 
other aspects of internal intermittency, such as the flatness factor and the skewness. 
It also enters (via the choice of the most appropriate threshold setting) in the 
determination of A and va; see $5 . )  

First, we show in figure 9 the Ap measurements in boundary layers; other flows 
are known to be no different. As discussed in $ 1, the peak pulse frequency A, initially 
increases with increasing midband frequency, and appears to settle down to a 
constant value in the far-dissipation region. This is a typical result ; more data can 
be found in Rao et al. (1971). The nearly linear initial rise of A, with f, is not surprising 
in view of the relatively flat spectral content in that frequency range (see (3.1)), but 
an interesting feature is that A, settles down to a constant fraction of the Kolmogorov 
frequency fq, for fm/fq 2 0.5. Rao et al. interpreted this constancy of A, with f, for 
large f, as follows. Whenever a wideband signal is passed through a narrow-band- 
psss-filter of bandwidth df,, the output of the filter is an amplitude-modulated signal, 
with the characteristic modulation frequency proportional to Af, itself. Since the 
resultant modulation is what one identifies with pulses, it is clear that the pulse 
frequency A, should be proportional to df,, or proportional for f, itself since A is 
a constant). In  general, therefore, rip cc f,, a result that we have shown, both 
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FIGURE 9. The (normalized) peak pulse frequency aa a function of the midband frequency fm; data 
for turbulent boundary layers : 0, Badri Narayanan et al. (1974), y/S = 0.4, Re = 3000 ; A, Antonia 
etal. (1976), y/S = 0.12, R8 = 5850; x ,present, y/S = 0.3, R, = 1580;-, theoretical calculations 
using (4.1). f7 is the Kolmogorov frequency given by U/2nv, q being the Kolmogorov microscale. 

analytically and experimentally, to be true for white noise. (This is true also for a 
Markov process whose spectral density asymptotes to a power-law roll-off; see (3.1) 
and (3.5).) The fact that 7ip settles down to a constant was thus attributed by Rao 
et al. to genuine internal intermittency. 

With this in background, it is now appropriate to consider what a priori 
considerations in the theory would have suggested that rip + constant as f, --f 00. We 
recall from section 3.2 that the only spectral shapes for which rip +constant as f, -+ co 
are 4 -f).ePaf, 4 - ePaf and g5 -f'e-pp. Within the framework of the theory, we 
thus conclude that the approach of rip to a constant implies that the roll-off of $( f )  
should be faster than algebraic.? It was pointed out several years ago by Kraichnan 
(1967) than a faster-than-algebraic decay in the far-dissipation range implies strong 
intermittency, no matter what the Reynolds number. Kraichnan's point was simply 
that, given a stronger-than-algebraic decay of the spectral density, the existence of 
the mean square of all velocity derivatives implies that the spectral density at any 
fixed wavenumber in the relevant wavenumber range comes from a few exceptional 
regions only - a typical attribute of he-scale intermittency. More recently, Frisch 
& Morf (1981) have also reached essentially the same conclusion, based on a more 
quantitative analysis in the complex domain of the nonlinear Langevin equation. 

To carry further the notion that the internal intermittency and the stronger- 
than-algebraic decay in the far-dissipation range are tied together, we shall now 
calculate the actual numbers in the (fip, f,)-relation shown in figure 9. Obviously, the 
notion derives stronger support if we can also quantitatively predict the observed 
( dP, f, ) -relation. 

A brief digression is necessary. Stewart & Townsend (1951) have shown that in grid 
turbulence the measured one-dimensional spectral density preserves its shape in the 
dissipation range when normalized on the Kolmogorov velocity scale and lengthscale. 

t In fact, we can be somewhat more specific and exclude the case 4 -f"e-d on the grounds 
that the results become meaningless for n 5 -0.5 (see (3.8)), and it is in practice not possible to 
fit a curve f" e-=f to the measured spectral density of n 2 - 0.5. 
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The conclusion empirically holds true for shear flows also. We have examined in the 
Appendix all the high-frequency spectral data in boundary layers as well as grid 
turbulence, and borrow from there the result that the self-preserving shape is 
satisfactorily described by the (empirical) expressions 

- exp( - 
J,,  

where v is the Kolmogorov velocity. 
We may now complete the fi, calculations in the range 0.1 5 flf, 5 1.5 using 

(3.6).? It is seen from figure 9 that the data from all the sources are in reasonable 
agreement with this theoretical calculation. We shall return to a discussion of this 
result in 55. (More recently, Antonia et al. (private communication) have produced 
fi, data which tend to asymptote at aroundflf, x 1 .O before sharply increasing again. 
Spectral measurements show that noise effects become important around f,,.) 

4.2. Grid turbulence 
Consider the Kuo-Corrsin data of 1971. They measure both the intermittency 
factory and the mean width @a of the high-frequency pulses. In  determining these 
quantities, the threshold (equivalent to our t)  was set to different values for each 
set of (ma,y)-measurements, but the precise value of 2, one of the important 
parameters in our theory, were not recorded. Thus the best we can do is to evaluate 
it from our theory using one of the measured quantities ma or y ,  and predict the other. 
If the prediction is reasonable, we conclude that the data are consistent with the 
theory. Clearly the comparison between theory and experiment is not as complete 
as in the case of boundary layers; this, of course, is the reason for considering 
grid-turbulence data separately. 

Two possibilities arise. One of them is to assume that the intermittency factor y 
is given, and evaluate t from (2.11), which gives 

t =  (-21117):. (4.2) 

Using this t, and the theoretical prediction of rip from (3.6) and (4.1), we can evaluate 
from (2.12) the mean width ma of the active regions. The other possibility is to assume 
@a as given, and evaluate t from (2.12) using the theoretically determined fi, ; we can 
then predict y from (2.11). We have done both. 

Figures 10 (a,  b) show the measured values of the intermittency factor y and the 
width @ of the pulses. From these two, one can compute the pulse frequency 
fi  (= y / f i a ) ,  also plotted in figure 10 (c). The unbroken lines in figures 10(b, c) are the 
theoretical calculations for ma and f i ,  obtaining t from the measured y ;  that in 
figure 10 (a)  represents the actual smoothing we have used for y in getting t from (4.2). 
The dashed line in figures 10 (a ,  c )  are the theoretical calculations for y and r Z ,  with t 
obtained from the measured ma, which itself is represented by the dashed line in 
figure lO(b). It is seen that the agreement between the experiment and either set of 
calculations is only qualitatively correct. We believe that part of the reason for no 
better quantitative agreement rests with the limitations of the procedure we have 
been forced to adopt, namely to assume that one or the other of the two measured 
parameters is precise. If we assume, for example, that neither of the measured 

t It is necessary to patch smoothly aroundf,,,/f, x 0.5 the results from the two expressions (4.1); 
no formal matching is possible. 
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FIQURE 10. (a) The intermittency factor, y ;  (a) the normalized width %urn of the pulses 
(w, = Znf,) ; (c) the pulse frequency T?, (= y / v a )  for grid turbulence. Data from Kuo & Corrsin 
(1971), R, = IlO,f, = 5900 Hz. - and -- are theoretical predictions explained in the text. 

parameters is correct to better than 10 %, we can in fact produce a better overall 
agreement by ‘splitting the difference’ between y and ma. Our objective is not to 
suggest that the measurements are inaccurate, but to point out that realistic 
uncertainties could affect the quality of our comparison in figure 10. 

Finally, we have formed the product ma fi, t for the Kuo-Corrsin data at the three 
Reynolds numbers of their measurement; the objective is to compare this product 
with prediction from (2.12). In  forming this product, ma was taken from measurement 
directly and t was obtained from measured y using (4.2). The peak pulse frequency 
fi, was obtained in two steps, first by getting f i  from measurement ( = ?/ma) and then 
converting it to fi, using the theoretical ratio fi/fip; since the midband frequency f, 
was set equal to fv in these measurements, fi/fip rz 1 (see figure 9). Thus we took 
fi, = fi = y /  ma. The product ma fi, t given in table 1 shows that the agreement with 
the theory is not unreasonable. 

In  sum, we believe that the grid-turbulence data are also not inconsistent with the 
theory. 

fm Jfq fm Jfq 

5. Discussions and conclusions 
It is useful to summarize our results here. We have shown in §§3 and 4 that 

fi/fip =f,Q,, Rfip =fA Y =f,@,, 
wheref,, fz and fs are known functions only of the threshold setting t. Thus the two 
basic characteristics of an intermittent signal, namely f i  and ma (note: y = tipa) are 
dependent only on t and the characteristic pulse frequency fi,. All the dynamical 
characteristics of the signal, as well as the filter settings (such as the bandwidth and 
the midband frequency), enter only indirectly in so far as they determine t and fi,. 
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TABLE 1. The product Pa fi,t from the grid-turbulence measurements of Kuo & Corrsin 
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FIGURE 11. The effect of midband frequency f,,, and the filter 
bandwidth A on the peak pulse frequency fi,. 

Let us first consider rip. The effect of filter characteristics on rip can be illustrated 
by taking the spectral density q5 to  be given by exp(-a(flf,)}; when flf, is not too 
small, this is typically the form we discussed in $4. Figure 11 shows the variation 
of the peak pulse frequency rip as a function off, and A .  Notice that, the larger the 
bandwidth, the earlier in f, is the aymptotic state reached. (This is to be expected 
because larger values of the bandwidth imply that the tail end of the spectrum 
representing the intermittent region is incorporated for lower settings of the filter 
midband frequency.) It is clear that, even if one measures the peak pulse frequency 
for the same signal a t  the same f,, one can come up with different values for rip 
depending on the filter bandwidth. On the other hand, the asymptotic value gP of 
rip is independent of the filter bandwidth (see (3.7)). We conclude that NP is a very 
important characteristic (because it is determined completely by the signal dynamics 
in a way we can determine; see below) of internal intermittency in the far-dissipation 
region. 

Regarding the dynamical aspects of the signal that  go into determining rip, we have 
shown that rip measurements in the far-dissipation region can be explained correctly, 
provided the spectral density in the far-dissipation range is assumed to  have a 
stronger-than-algebraic roll-off. The question that naturally arises is whether this 
requirement on the roll-off characteristics of q5 is merely an  artifact of our having 
persisted with Gaussianity assumption for the filtered version of u(t), t  knowing full 

t We would like to emphasize that our theory does not assume that u(t) is Gaussian, but only 
its narrow-bandpass version is. Narrow-bandpass filtering introduces considerable smoothing, and 
a smoothing of a non-normal stochastic process makes it tend towards normality. Probability 
density measurements of narrow-bandpass-filtered turbulent-velocity signals actually show tha t  
the departures from Gaussianity are significant only towards the tails; these departures, while being 
cruciaE for the flatness factor and the skewness (for example), do not seem to be important in the 
context of the intermittency measures we have considered. 
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well that i t  cannot be completely correct. We do not have a conclusive answer, 
because for no other probability distribution can the results be made as explicit as 
has been possible here. There exist several pointers, however. First, Kraichnan’s 
conclusion that internal intermittency implies a stronger-than-algebraic spectral 
roll-off did not have to use normality assumption in any way. This suggests to us 
that the complementary conclusion, that only the stronger-than-algebraic spectral 
roll-off will reproduce the observed (fipf,)-relation, may also be independent of the 
normality assumption. Furthermore, our limited experimentation suggests that a 
small perturbation on a Gaussian process does not matter much for the internal 
intermittency measures discussed here. Together, they lead us to believe that the 
assumption of Gaussianity in our theory is probably only incidental, and simply the 
most convenient; it  follows that the stronger-than-algebraic decay of 4 in the 
far-dissipation range may be a genuine characteristic of internal intermittency . 
Perhaps, this is characteristic of all intermittent nonlinear processes. The work of 
Frisch & Morf (1981) has gone farthest in elucidating this point. These authors have 
shown, with particular reference to the nonlinear Langevin equation, that the 
exponential nature of the spectral density in the far-dissipation region can be related 
to the singularities of the equation in the complex plane. Whether the Navier-Stokes 
equations are singular in the complex plane is, however, an open question. 

If it is true that rip can also be considered a known quantity, it follows that the 
only parameter that sets apart different signals as regards their intermittency 
characteristics is the threshold setting 2. The most important question in internal 
intermittency measurements is therefore : ‘What is the correct threshold setting that 
one should choose 1 ’ A complete theory should of course reveal how 2 must depend 
on the dynamical characteristics of the signal itself (and the filter settings); the 
present theory is incapable of providing an answer to this question, precisely because 
the dynamical considerations we have ignored all along will certainly become 
important here. Several considerations go into the determination of the correct 
threshold level, but the most important step is clearly subjective.? Therein lies the 
weakness of all internal intermittency measurements involving the frequency of 
pulses, intermittency factor and the pulse width. 

In spite of this subjectivity, it  is useful to take guidance from typical measurements 
and discuss how the ‘ correct ’ values of the threshold 2 may depend on the dynamical 
characteristics of the signal. Figure 12 shows the empirically determined threshold 
for filtered turbulence signals. Assuming that the subjective judgement that goes into 
determining these data is correct, the figure shows that t increases with increasing 
midband frequency (i.e. the signal becomes more and more intermittent at smaller 
and smaller scales). For white noise, on the other hand, 2 does not depend onf,, and 
y is therefore independent off,. 

Because of the subtle influences that various factors have on internal intermittency 
measurements, and because of the extreme sensitivity of the results on the threshold 
setting, it is not surprising that different authors have arrived at different values for 
the several measures of intermittency, often with conflicting conclusions (see 5 1). 

t Briefly, one generates an indicator function Z(t)  that is a random square wave such that Z( t )  = 1 
whenever the signal exceeds the chosen threshold, and zero otherwise. One then compares Z( t )  with 
the filtered signal to determine whether the threshold chosen is ‘correct’. This last step is crucial 
but subjective. For the correct setting y = Z(t) .  This technique, originally used in the outer-layer 
intermittency measurements in free shear flows, is due to Townsend (1948). Other sophistications 
introduced later (see e.g. Kuo & Corrsin 1971; Hedley & Keffer 1974) do not eliminate the need 
for the final subjective comparison of Z(t)  with the original signal. 
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FIGURE 12. The experimentally determined threshold setting as a function of the midband filter 
frequency. Data for u in a turbulent boundary layer, R, = 1580, y/S = 0.3. 

What we have shown is that, if all factors are properly taken into account, the 
seemingly confusing picture becomes quite clear. Part of the contribution of this paper 
is in sorting out this confusion by way of determining the precise roles of each of the 
parameters entering the problem. 

I cannot exaggerate the impact on this work of a brief conversation I had some 
eight years ago with Professor R. Narasimha. I should also like to thank Professor 
R. A. Antonia and Dr D. Britz for their most penetrating comments on an earlier 
draft. Thanks are due to Dr H. Oertel of DFVLR, Gottingen, for the hospitality 
extended a t  his institute while the manuscript was being completed. During part of 
my stay at  DFVLR, I was awarded a fellowship from the Alexander von Humboldt 
foundation. 

Appendix 
Figure 13 shows some high-frequency spectral data of u in turbulent boundary 

layers; also plotted are data for a high-Reynolds-number (Re = 500000) pipe flow 
of Laufer (1954). It is clear that a reasonable degree of self-preservation exists in the 
Kolmogorov variables (although the details of Kolmogorov’s arguments cannot be 
expected to hold in shear flows). 

Except for our own data in figure 13, the other two sources of data are quite old. 
Relatively more recently, Comte-Bellot t Corrsin ( 1971) have obtained high-frequency 
spectral data in grid turbulence for two Reynolds numbers and at  several locations 
behind the grid. We have plotted their data in figure 14, again normalizing by the 
Kolmogorov scales. They too confirm an excellent tendency towards self-preservation ; 
note that the energy scale spans about eight decades in this region. Except for the 
last two points of Klebanoffs data, figures 13 and 14 are quite comparable where 
they over€ap. 

To determine the best exponential fit for #, we have plotted in figure 15 data from 
both figures in the form In (#/wzy) versus f/f7. We can see that the two expressions 
given in (4.1) fit the data well in the respective ranges. 

High-frequency spectral data are difficult to obtain accurately, and are plagued 
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FIGURE 13. Self-preservation of the high-frequency end of the spectral density in shear-flow 
turbulence. Boundary-layer data from Klebanoff (1955). R, = 75000: 0,  y/B = 0.05; A, 0.20; x , 
0.58. v, pipe-flow data from Laufer (1954), R, = 500000, y / a  = 0.074, where (I is the pipe radius. 
x , present data, Ro = 1580, y / B  x 0.3. 

by uncertainties such as noise and effects of the finite length of the hot wire. It is 
nevertheless heartening to note that all the data agree within reason. Most sets of 
data in figures 13 and 14 were corrected for electronic noise and ‘empty tunnel 
disturbances’, but none was corrected for the finite-length effects of the hot wire. 
Comte-Bellot & Corrsin (1971) note that this last correction was within the measure- 
ment scatter. 

The precise value of the coefficient a in @ - exp { -a(f/j,,) correspondin to the 
second expression in (4.1) determines in our theory the asymptotic value Ifp of fi,. 
A 20 yo change, for example, in the value of a (should such a change be necessitated 
by improved data that may be acquired in future with more sophisticated instrum- 
entation) will produce a 20 % variation in ivp, but this does not affect our conclusions. 
In  fact, a 20% larger a will produce a better fit to our own fi, data in figure 9, as 
well as to the K u d o r r s i n  data in figures 10. 

The observed universality of the spectrum when plotted in the Kolmogorov 
variables suggests (see (2.7) and (2.8)) that AP/jv must be a unique function ofjm/j,, 
forj,/f,, not too small. That, of course, is why we plotted data in figure 9 the way 
we have. Considering the difficulty in making the fiP measurements, figure 9 can be 
considered to support the contention. 
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FIQURE 14. Self-preservation of the high-frequency end of the spectral density of the longitudinal 
component of velocity in grid turbulence. Data from Comte-Bellot & Corrsin (1971). 
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FIGURE 15. The exponential fits to the tail-end of the Kolmogorov-normalized spectral data. 
0 represents the mean of the grid-turbulence data of figure 14; other symbols aa in figure 13. 
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